Phospholipid-based self-assembled mesophase systems for light-activated drug delivery.
نویسندگان
چکیده
The manipulation of the structure of phospholipid-based mesophases to induce a slow to fast drug release profile has potential for use in therapeutic situations where continuous absorption of drug is not desirable and reduce the frequency of injection for short acting or rapidly cleared drugs in treatments for diseases such as macular degeneration. This study had two aims; firstly to confirm the phase behaviour of 20 mol% cholesterol in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), which was previously reported to transition from lamellar (slow release) to bicontinuous cubic (fast release) phase with increasing temperature. Contrary to the literature, no bicontinuous cubic phase was observed but a transition to the inverse hexagonal phase occurred at all POPE : cholesterol ratios investigated. The second aim was to render these mesophases responsive to near-infrared laser (NIR) irradiation by incorporation of gold nanorods (GNR) incorporated into the POPE system to induce photothermal heating. The inclusion of 3 nM GNR in POPE systems induced reversible disruption of lipid packing equivalent to increasing the temperature to 55 °C when irradiated for 30 s. This study confirmed that although the previously published phase behavior was not correct, GNR and NIR can be used to manipulate the self-assembled mesophases in phospholipid-based systems and highlights the potential for a phospholipid-based light-activated drug delivery system.
منابع مشابه
Mesophase in a thiolate-containing diacyl phospholipid self-assembled monolayer.
Maintaining the intrinsic features of mesophases is critically important when employing phospholipid self-assemblies to mimic biomembranes. Inorganic solid surfaces provide platforms to support, guide, and analyze organic self-assemblies but impose upon them a tendency to form well-ordered phases not often found in biomembranes. To address this, we measured mesophase formation in a thiolate sel...
متن کاملSelf-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery.
Self-assembly of peptides can yield an array of well-defined nanostructures that are highly attractive nanomaterials for many biomedical applications such as drug delivery. Some of the advantages of self-assembled peptide nanostructures over other delivery platforms include their chemical diversity, biocompatibility, high loading capacity for both hydrophobic and hydrophilic drugs, and their ab...
متن کاملPacking and mobility of hydrocarbon chains in phospholipid lyotropic liquid crystalline lamellar phases and liposomes: characterisation by positron annihilation lifetime spectroscopy (PALS).
Lipid lamellar mesophases and their colloidal dispersions (liposomes) are increasingly being deployed in vivo as drug delivery vehicles, and also as models of biological membranes in fundamental biophysics studies. The permeability and diffusion of small molecules such as drugs is accommodated by a change in local curvature and molecular packing (mesophase behaviour) of the bilayer membrane mol...
متن کاملFormulation Design and Development of Self-Nanoemulsifying Drug Delivery Systems Containing a Hydrophobic Selective β1-Adrenoreceptor Blocker
The present work was aimed to design and develop self-nanoemulsifying drug delivery systems (SNEDDS) with the objective to overcome the problems associated with the delivery of talinolol, a hydrophobic and poorly bioavailable drugs having pH dependant solubility. The solubility of talinolol in various oils, surfactants, cosurfactants and aqueous phases were determined to identify and select the...
متن کاملSelf Assembled Systems: Design and Drug Delivery Perspectives
In recent years, self assembled materials have received increasing attention in pharmaceutical science as they promise incredible potential for therapeutic and diagnostics applications. Owing to the low aqueous solubility of various drugs, a solubilizing delivery system is often required for reaching sufficient drug bioavailability and/or to facilitate clinical or even preclinical research and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 21 شماره
صفحات -
تاریخ انتشار 2015